Oppgave 5.10 med CASIO fx-9860GII, CFX-9850GC Plus og Excel

I en klasse er det 15 jenter og 10 gutter. Vi velger ut fire elever og lar X være antall jenter av de fire. Finn forventningsverdien, variansen og standardavviket.

CASIO fx-9860GII

Dette er en hypergeometrisk modell og sannsynlighetene kan regnes ut som vist nedenfor.

Х	0	1	2	3	4
P(X=x)	$\frac{\binom{15}{0}\binom{10}{4}}{\binom{25}{4}}$	$\frac{\binom{15}{1}\binom{10}{3}}{\binom{25}{4}}$	$\frac{\binom{15}{2}\binom{10}{2}}{\binom{25}{4}}$	$\frac{\binom{15}{3}\binom{10}{1}}{\binom{25}{4}}$	$\frac{\binom{15}{4}\binom{10}{0}}{\binom{25}{4}}$

 $\binom{15}{3}$ regnes eksempelvis ut som $\frac{15!}{3! \cdot (15-3)!} = \frac{13 \cdot 14 \cdot 15}{1 \cdot 2 \cdot 3} = 455$

Dette antall kombinasjoner kan også regnes ut direkte på kalkulatoren med **15 OPTN PROB nCr 3 EXE** som vises som **15C3** og gir svaret **455**.

Vi kan dermed regne ut P(X=0) med 15C0 × 10C4 ÷ 25C4 EXE som gir svaret 0.01660079051, osv.

Når vi har regnet ut sannsynlighetene, kan vi finne forventningsverdien, variansen og standardavviket med formlene $\mu = \sum x_i \cdot P(X = x_i)$, $VAR(X) = \sum (x_i - \mu)^2 \cdot P(X = x_i)$ og $\sigma = \sqrt{Var(X)}$

Det er imidlertid enda enklere å bruke **STAT** menyvalget. Da kan vi få ut alle sannsynlighetene på en gang. Legg inn **0**, **1**, **2**, **3** og **4** i **List 1**. Velg **DIST**, **H-GEO** og **Hpd** (Se neste side dersom kalkulatoren din ikke har H-GEO):

Data	: List
List	: List 1
n	: 4
М	: 15
N	: 25
Save Res	: List 2
Execute	
1	0.0166
1 2	0.0166 0.1422
1 2 3	0.0166 0.1422 0.3735
1 2 3 4	0.0166 0.1422 0.3735 0.3596

0.1079

5

- **EXIT**, **EXIT** tar oss tilbake til listene. Sjekk at sannsynlighetene ligger i **List 2**.
- Velg nå STAT, SET og sjekk at 1Var XList : List 1 og 1Var Freq : List 2
- EXIT og 1VAR gir $\overline{x} = 2.4 \text{ og } \sigma x = 0.91651513$

Altså er $\mu = 2.4$, $\sigma \approx 0.92$ og $Var(X) = \sigma^2 \approx 0.917^2 \approx 0.84$

Ola Lie

Casio CFX-9850GC Plus eller lignende

Dersom kalkulatoren din ikke har H-GEO, kan du bruke TABLE og overføre resultatene til List 2.

- 1. Velg TABLE og legg inn Y1 = 15CX × 10C(4-X) ÷ 25C4 EXE
- 2. Sett F5 (RANG) til Start: 0, End: 4 og Pitch: 1 EXE F6 (TABL)
- 3. Flytt markøren til kolonnen med sannsynlighetene (Y1)
- 4. OPT, F1 (LIST), F2 (LMEM) og F2 (List2) kopierer sannsynlighetene til List 2

Du kan nå fortsette som forklart på side 1:

- 5. **MENU**, **STAT** og legg inn **0**, **1**, **2**, **3** og **4** i **List 1**.
- 6. F2 (CALC), F6 (SET) og sjekk at 1Var XList: List 1 og 1Var Freq : List 2
- 7. F1 (1VAR) gir $\overline{x} = 2.4 \text{ og } x \sigma n = 0.91651513$

Altså er $\mu = 2.4$, $\sigma \approx 0.92$ og $Var(X) = \sigma^2 \approx 0.917^2 \approx 0.84$

Microsoft Excel 2010

Dersom du ikke har kalkulator, kan du gjøre det samme i EXCEL:

	А	В	С	D	E	F
1	х	0	1	2	3	4
2	P(X=x)	0,01660079	0,14229249	0,37351779	0,35968379	0,10790514
3	E(X)	2,40				
4	Var(X)	0,84				
5	SD(X)	0,92				

Nedenfor er formlene bare vist for P(X=0) og P(X=1). Når du har skrevet inn tallene 0 til 4 i B1 til F1, holder det med å skrive inn formelen i B2. Deretter kan B2 kopiers til C2:F2.

	Α	В	С
1	х	0	1
2	P(X=x)	=HYPGEOM.FORDELING.N(B1;15;4;25;USANN)	=HYPGEOM.FORDELING.N(C1;15;4;25;USANN)
3	E(X)	=SUMMERPRODUKT(B1:F1;B2:F2)	
4	Var(X)	=SUMMERPRODUKT((B1:F1-\$B\$3)^2;B2:F2)	
5	SD(X)	=ROT(B4)	